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ABSTRACT
The increased interest in the variability of soil properties is respon-

sible for recent observations that soil variables are not normally dis-
tributed but are more closely approximated by the two-parameter
lognormal frequency distribution. Statistical methods commonly ap-
plied in the estimation of the median of lognormally distributed data,
however, are biased or inefficient. The purpose of this study was to
evaluate four statistical methods for estimating, from sample data,
the median of a lognormal population. The four statistical methods
were: (i) the geometric mean (GM), (ii) a bias-corrected form of the
geometric mean (BCGM), (iii) a uniformly minimum variance un-
biased (UMVU) estimator, and (iv) the sample median (SM). In ad-
dition, two techniques for computing confidence limits about the median
were evaluated. Monte Carlo simulations from four different lognor-
mal populations were used in these evaluations to determine the ef-
ficacy of these methods as a function of both population variance and
sample size (n = 4-100). Results of this work indicate that the UMVU
estimator and the BCGM estimators are unbiased and yield estimates
with the lowest mean square error. An example is provided that il-
lustrates the application of these techniques.

MANY of the complex environmental questions faced
by society require more precise quantification

of environmental variables and processes. Once com-
plicating factor in such environmental studies is the
high degree of spatial variability often exhibited by
natural variables. Automated data collection and
analysis instrumentation has enabled investigators to
collect large data sets in an attempt to deal with the
problems of high variability. These developments have
enabled better determination of frequency distribu-
tions.

Many environmental variables exhibit skewed fre-
quency distributions that can be approximated by the
lognormal distribution. Unlike symmetric distribu-
tions in which the mean and median have the same
value, with nonsymmetric distributions, such as the
lognormal distribution, the mean and median have dif-
ferent values. When such distributions occur, a choice
exists concerning the summary statistic of interest. In
a study of epiphytic bacterial populations on leaf sur-
faces, the median was chosen as the relevant summary
statistic (Hirano et al., 1982). The geometric mean
has also been used as a measure of central tendency
for populations of bacteria in the rhizosphere (Loper
et al., 1984) and for bacterial populations in aquatic
environments (Greenberg et al., 1985). In contrast, it
has been suggested that, for quantification of denitri-
fication N loss from soils, the mean is a more appro-
priate estimator than the median (Parkin, 1991).

For skewed data the choice of the appropriate sum-
mary statistic is important, as it influences the out-
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come of statistical tests and, therefore, data
interpretation (Parkin et al., 1987; Parkin, 1991). A
detailed discussion of the power of statistical tests in
detecting differences in the mean vs. the median as
well as a discussion of criteria for selection of the
mean vs. the median is presented elsewhere (Parkin,
1991, 1993; Parkin and Robinson, 1992). In cases
where the population median is the appropriate sum-
mary statistic, it is important to accurately estimate
this quantity from the data. The choice of the optimum
estimator is not the only consideration: confidence in-
tervals for the estimator must also be computed.

In previous studies we reported on methods for es-
timating the mean, variance, and coefficient of vari-
ation for lognormally distributed variables (Parkin et
al., 1988) as well as on methods for computing con-
fidence limits for the lognormal mean (Parkin et al.,
1990). This study extends those findings by evaluating
several methods of estimating the population median
and confidence limits for the median of a log-normally
distributed variable. We report on four methods of
estimating the population median from sample data
and two techniques for computing confidence limits
of the median. These methods were evaluated using
four lognormal distributions and across a range of
sample sizes representative of those commonly ob-
served in studies of environmental variables.

METHODS
Estimators of the Median

Four estimators of the population median were evaluated:
(i) the sample GM, (ii) BCGM, (iii) SM, and (iv) UMVU.
Descriptions of the implementation of these estimators are pre-
sented below.

The Sample Geometric Mean
The sample geometric mean is the nth root of the product

of n samples. This is equivalent to the antilogarithm of the
average of the lognormally transformed sample values:

GM = exp(y) [1]
where y is the arithmetic average of the lognormally trans-
formed sample values.

For large samples drawn from lognormal populations the
GM is, approximately, an unbiased estimator of the population
median; however, positive bias exists at small sample sizes,
with the magnitude of the bias inversely proportional to the
sample size (Gilbert, 1987). The bias associated with the GM
is given by:

bias (%) = 100 x [exp(er2/2n) - 1] [2]

where a-2 is the variance of the lognormally transformed pop-
ulation.
Abbreviations: GM, geometric mean; BCGM, bias-corrected
geometric mean; UMVU, uniformly minimum variance unbiased;
SM, sample median; UCL, upper confidence limit; LCL, lower
confidence limit; MSB, mean square error; VAR, variance; CV,
coefficient of variation.
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Bias-Corrected Geometric Mean
Gilbert (1987) reported that the BCGM can be an estimator

of the population median if cr2 is known. He suggested that
the variance of the lognormally transformed sample can be
used if a-2 is not known; however, an evaluation of this tech-
nique was not done.

The BCGM is calculated according to:

BCGM = exp(y - [3]

where cr2 is the variance of the lognormally transformed sam-
ple data.

The Sample Median
The sample median is the center value of the ordered sample

data. If an odd number of samples is available, then the median
is the sample corresponding to the [(n + l)/2]th rank. If n is
even, then the median is calculated as the average of the two
center values of the ranked data:

SM = JC[(n +

SM = (x(n/2) *•[(« + 2)12})

n = odd [4]

n = even [5]

The SM has been reported to be an asymptotically unbiased
estimator of the population median (Kleijnen, 1987).

The Uniformly Minimum Variance Unbiased Estimator
The UMVU estimator of the median was developed by Bradu

and Mundlak (1970) based on the work of Finney (1941), and
is theoretically an unbiased minimum variance estimator:

UMVU =

where !/>„ is the power function:

z(n

6-2/[2(n - 1)]} [6]

1) z2(n - I)3

n + n\n + 1)2!
z3(n - I)5

n\n + l)(n + 3)3! [7]

where {- cr2/[2(n - 1)]} is substituted for z in Eq. [6], and n
is the sample size.

In this study, Eq. [7] was evaluated until the final term
accounted for <1% of the sum of the preceding terms. This
usually required from six to 10 terms.

Confidence Interval Estimators of the Median
Two methods for constructing a confidence interval for the

median of a lognormally distributed variable were evaluated.
A description of the methods is presented below.

Method 1
This method is based on the normal approximation of the

binomial distribution in which order statistics are calculated to
yield an approximate 95% confidence interval (Snedecor and
Cochran, 1967, p. 123-125.) Although this technique is ap-
proximate, it is simple and straightforward to apply since it
does not necessitate the use of the binomial distribution (Con-
over, 1980, p. 493). Upper and lower confidence limits are
given by:

LCL, = x(s)

UCL, = x(r)

[8]

[9]

where x(s) and x(r) are the sth and rth values of the ordered
sample data. The values of r and s are calculated according
to:

s = (n + l)/2 - Vn,

rounded down to the nearest integer [10]

r = (n + l)/2 + Vn,

rounded up to the nearest integer

Method 2

[11]

This technique is the asymptotic or normal theory method
applied to lognormally transformed sample data (Gilbert, 1987).
Lower and upper confidence limits are given by:

LCLj = exp(y - t(0.975,«-1

UCLj = exp(y

[12]

[13]

where / = the critical value from Student's t distribution with
n - 1 degrees of freedom for a two-tailed value of a = 0.05.

Evaluation of Estimators
Evaluation of Median Estimators

Two criteria were used to evaluate the estimators of the
median: bias and MSE. A biased estimator is one whose ex-
pected value deviates from the population parameter being es-
timated. Thus, a biased estimator will, on average, either
underestimate or overestimate the population parameter. Bias
alone is not a sufficient criterion to choose a method, as the
variance associated with the estimator may be so large as to
limit its utility. When bias exists, however, variance alone is
not a valid criterion (Barnett, 1973). In this situation the MSE
is used, with the optimal estimator being the one with the
lowest MSE. The MSE is the sum of the variance and the bias
squared:

MSE = VAR + bias2 [14]

Monte Carlo simulation was used to determine the influence
of sample size on bias and MSE of the median estimators.
Sample sizes of four to 100 observations (incremented by two)
were selected from each of four lognormal populations with
known properties. The four lognormal distributions used spanned
the range of positively skewed distributions observed for soils
data (Parkin et al., 1988). Each population had a mean of 10
and coefficients of variation of 50, 100, 200, and 500%. The
statistical properties of these two-parameter lognormal popu-
lations are given in Table 1. These same distributions were
used in our previous study to evaluate methods for estimating
the mean, variance, coefficient of variation, and confidence
intervals of the mean of lognormally distributed data (Parkin
et al., 1988; Parkin et al., 1990).

Twenty-five thousand Monte Carlo simulations were run for
each sample size using an algorithm for generating random
variates from a lognormal distribution, and the population me-
dian was estimated by the four methods for each simulation.
The pseudo-random number generator resident in the program-
ming language (Turbo Basic, Borland, Scotts Valley, CA) was
used in these simulations. The bias, bias percentage, and var-
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Table 1. Statistical properties of the four test populations.

Population
A
B
C
D

Mean
10.0
10.0
10.0
10.0

Median
8.944
7.071
4.472
1.961

Mode
7.155
3.536
0.894
0.075

Skewness
1.625
4.000

14.000
140.000

Variance
25.0

100.0
400.0

2500.0

Mean of
logarithms

2.191
1.956
1.498
0.674

Standard
deviation of
logarithms

0.4734
0.8326
1.2690
1.8050

iance of the 25 000 simulations for each sample size were
calculated by:

Bias = - § (p, , - P) [15]

Bias (%) = 100 x Bias/P [16]

Variance = - § (p, ,- p)2 [17]n, / = i

where
ns = the number of Monte Carlo simulations = 25 000,
P = the true value of the population median,
Pi = the estimate of the population median for the /th Monte

Carlo simulation obtained by one of the four methods,
and

p = the average of medians estimated from the ns Monte
Carlo simulations.

The MSB for each estimator was calculated according to
Eq. [14].

Confidence Interval Evaluations
The confidence interval methods were evaluated with regard

to efficacy in providing coverage at the stated level. Confi-
dence intervals were constructed for each stimulation at an a

level of 0.05, with the error divided equally between the two
tails. This is equivalent to constructing two one-sided 97.5%
confidence limits, thus yielding a two-sided 95% confidence
interval. The proportion of times the actual population median
was less than the UCL was counted (97.5% expected for an a
= 0.05). Likewise, the proportion of times the population
median was greater than the lower limit was counted (97.5%
expected for an a = 0.05). The results of this analysis are
estimates of the actual probability levels for the UCL and LCL
calculated by each method. The methods we judged by how
well these estimated probability limits compared with the the-
oretical 97.5% target level. These evaluations were performed
for sample sizes of four to 100 at increments of two (25 000
simulations at each sample size) drawn from each of the four
lognormal populations.

RESULTS AND DISCUSSION
Estimators of the Median

For all populations and across the range of sample
sizes tested, both the GM and the SM estimators yield
positively biased estimates of the true population me-
dian. That is, they produce values which, on the average,
overestimate the true population median (Table 2). The
degree of bias increases with increasing population var-
iance, and decreases with increasing sample size. For a
sample size of four, bias of the GM and SM is not severe
for Population A (2.9 and 5.1%, respectively). As pop-
ulation variance increases, bias also increases, such that

Table 2. The bias percentage of the median estimators at select sample sizes. Results for all four estimators were obtained from
the Monte Carlo simulations, and in addition the bias percentage associated with the geometric mean was calculated using Eq.
[2] using the known population variances.

Bias percentage

Population A

Population B

Population C

Population D

Sample size
no.

4
12
20
40

100
4

12
20
40

100
4

12
20
40

100
4

12
20
40

100

Geometric
mean (Eq. [2])

2.89
0.93
0.62
0.28
0.11
9.05
2.93
1.75
0.87
0.35

22.3
6.94
4.11
2.02
0.81

50.3
14.5
8.49
4.16
1.64

Geometric
mean

2.81
0.94
0.62
0.26
0.12
8.67
2.82
1.89
0.79
0.37

22.5
6.76
3.78
1.96
0.71

49.9
13.8
9.02
4.10
1.64

Sample median
——— % ——————

5.14
1.53
0.96
0.48
0.22

16.4
4.69
2.95
1.21
0.58

43.4
10.9
6.39
3.18
1.15

108.0
24.1
14.6
6.59
2.65

Uniformly
minimum
variance
unbiased

-0.07
0.01
0.0

-0.02
0.01

-0.72
-0.13

0.10
-0.09

0.02
-1.19
-0.40
-0.39
-0.09
-0.10
-7.50
-1.59

0.14
-0.15
-0.02

Bias-
corrected
geometric

mean

-0.21
-0.04
-0.05

0.03
0.0
0.29

-0.04
-0.02
-0.02
-0.02

1.62
0.54
0.12

-0.02
-0.16

4.21
0.60

-0.04
0.06
0.12
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for Population D (CV = 500%) the bias associated with
a sample size of four is 50 and 108% for the GM the
SM, respectively. Across all the sample sizes evaluated,
the bias associated with the SM is approximately twice
that of the GM.

Monte Carlo simulation was applied to the UMVU
estimator to evaluate the random error associated with
the computer simulations. For Population A, the random
error associated with the computer simulations was low
(±0.07% at n = 4). The random error associated with
the simulations was highest for Population D at small
sample sizes (7.5% for n = 4). This random error, how-
ever, is small compared with the magnitude of the bias
percentage exhibited by the SM and GM estimators. An
additional check on the simulations is provided by com-
paring the theoretical bias associated with the GM, cal-
culated from Eq. [2], to results obtained from the Monte
Carlo simulations. Across all populations and sample sizes,
the theoretical bias percentage and the simulation results
for the GM agree well, indicating that random errors
associated with the computer simulations were minor.

The bias associated with the BCGM was minimal and
fluctuated around zero. Thus, within the error limits of
the simulations, the BCGM appears to be an unbiased
estimator of the population mean.

Evaluation of the estimators was not based solely on
bias; the variance associated with each estimator was
also considered. Mean square error is a combined mea-
sure of the variance of the estimator as well as the bias
(Eq. [8]). For each population, the estimators exhibit a
similar trend of decreasing MSE with increasing sample
size (Fig. 1). For any given sample size, the SM has the
highest MSE. Differences in MSE associated with the
estimators are most apparent at small sample sizes (n <
12), and for larger sample sizes (n > 20) only minor

differences are observed. For Populations A and B (Fig.
1A and IB) the MSE associated with the UMVU and
GM are nearly identical across the range of sample sizes.
For Populations C and D (Fig. 1C, ID), however, greater
differences in MSE associated with the GM and UMVU
exist at small sample sizes. Across the range of sample
sizes and populations, the MSE associated with the BCGM
is nearly identical to the MSE of the UMVU estimator.

Based on these results, we recommend either the
UMVU or the BCGM as the estimators of choice for the
population median. This is a blanket recommendation
made across the range of sample sizes and populations
investigated in this study. Since the BCGM and UMVU
estimators yield nearly identical results with regard to
bias and MSE, the BCGM may be more desirable, as it
does not require evaluation of Eq. [7], and is therefore
numerically less cumbersome to implement. The GM,
while slightly easier to calculate (the bias correction does
not have to be made), may show substantial bias at small
sample sizes when population variance is high. For large
sample sizes (n > 20 Populations A and B; n > 40
Populations C and D) the bias correction may not be
necessary; however, this correction is very simple to
implement. The SM is never recommended when it is
assured that the underlying population is adequately
modeled by a lognormal distribution.

Confidence Intervals about the Median
Two methods were applied for calculation of confi-

dence limits about the median. The first technique is a
nonparametric method based on the order statistics, which
gives an =95% confidence interval regardless of the form
of the underlying frequency distribution. The second
technique is the asymptotic or normal theory method

LLJ

f= 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3

36.3 POPULATION D

°0 10 20 30 40 50 60 70 80 90 100 °0 10 20 30 40 50 60 70 80̂ 0 100

Sample Size (n)
Fig. 1. Mean square error of four estimators of the median as a function of sample size for four lognormal populations. Across

all sample sizes and populations, mean square error of bias-corrected geometric mean and uniformly minimum variance
unbiased estimator were nearly identical.
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applied to lognormally transformed sample data. This
technique, when applied to lognormally transformed
sample data, yields exact upper and lower 97.5% con-
fidence limits.

Results for the LCL are shown in Fig. 2. The behavior
of the two methods as a function of sample size showed
similar patterns for all four test populations. The non-
parametric method exhibited wide fluctuations, and con-
sistently yielded confidence limits that were greater than
the target (1 - a)/2 level of 0.975. In contrast, the
parametric method showed minor fluctuations centered
around the 0.975 level.

Upper confidence limits calculated by the two meth-

1.00

0.99

0.98

0.97 • nonparametric method
a parametric method

>**
!5

o
CL

0.96 100

Sample Size (n)
Fig. 2. Realized probability level (1 — a/2) of lower confidence

limits calculated by the nonparametric method and the
parametric method for each of the four lognormal test
populations. The horizontal line in each panel indicates the
theoretical 0.975 probability level.

ods behaved in much the same manner as the LCLs (Fig.
3). The nonparametric method provided coverage >0.975,
while the parametric method provided coverage at the
target 0.975 level. The overall result of this evaluation
is that the nonparametric method yields a 96.8% confi-
dence interval (range 95.4-99.2%), while the parametric
method yields a confidence interval at the stated (1 -
a) level of 95% (range 94.6-95.4%).

In addition to providing exact UCLs and LCLs at the
stated probability level, the parametric method also had
a resulting confidence interval that was narrower than
the confidence interval provided by the nonparametric
method (Table 3). The greatest differences in confidence

1.00

0.99

0.98

0.97

0.96
1.00

0.99

0.98

0.97

• nonparametric method
n parametric method

n
(0

8
Q.

0.97

0.96
80 100

Sample Size (n)
Fig. 3. Realized probability level (1 — a/2) of upper confidence

limits calculated by the nonparametric method and the
parametric method for each of the four lognormal test
populations. The horizontal rule line in each panel indicates
the theoretical 0.975 probability level.
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interval widths exhibited by the two methods were man-
ifested at low sample sizes (« < 20), and for the highly
skewed populations (Populations C and D).

Based on these results, we recommend the parametric
method for computing confidence limits about the me-
dian, as this method provides exact limits and the re-
sulting confidence intervals are narrower than those
provided by the nonparametric method. This recommen-
dation is only made when it is assured that the sample
data are from a lognormal distribution. It should be noted
that, while the parametric method is the optimal method
for true lognormal data, the nonparametric method yielded
reasonably accurate confidence limits, and thus may be
preferred when the underlying population distribution is
unknown.

The "saw-tooth" behavior of the results obtained by
the nonparametric method is a result of the rounding
operations required to compute the confidence limits.
We recognize that better methods for computing non-
parametric confidence intervals exist. As an alternative
to rounding up or down as prescribed by Eq. [10] and
[11], exact probabilities could have been computed using
the binomial theorem (Conover, 1980, p. 493). Our in-
terest in this study, however, was to evaluate the per-
formance of this simple method in relation to the exact
parametric approach.

The purpose of this study was to evaluate median es-
timators and confidence interval methods applied to log-
normal data. Our results indicate that, when the sample
data are from a lognormal distribution, the BCGM per-
forms nearly as well as the UMVU estimator, yet is
simpler to compute. Also, the parametric method of cal-
culating confidence limits is exact. While the lognormal
distribution may be an appropriate model for many soil
processes (Parkin et al., 1988), there are situations in
which the data, though skewed, may not be lognormally
distributed. The robustness of these methods to devia-
tions from lognormality has not been evaluated and in
some cases it could be possible that the sample median
and the nonparametric confidence limit method would
outperform the other methods of this study when the

underlying population is not truly lognormal. If the data
analyst is not comfortable with the assumption of log-
normality, or if the sample size is large enough, the
sample median may be used as an estimator, along with
the nonparametric method for computation of confidence
limits. It must be recognized that the sample median,
while asymptotically unbiased, exhibits significant bias
at small sample sizes when applied to lognormal data.

APPENDIX
While it is impossible to evaluate the efficacy of estimators

using only sample data, the following discussion is provided
to illustrate the mechanics of applying the four estimators of
the median and two confidence limit methods to sample data.
This example data set (Table 4) contains 20 observations of
pore water velocity, which were presented by Warrick and
Nielsen (1980). This data set has been reported to be lognor-
mally distributed. Table 4 shows the nontransformed and the
lognormally transformed pore water velocity data for each ob-
servation. Also shown are values of the mean and variance of
the lognormally transformed sample data (y and a, respec-
tively), which are used in the following calculations.

Estimators of the Median
The Geometric Mean

Applying Eq. [1] the geometric mean is calculated as:

GM = exp(2.12) = 8.33

The Bias-Corrected Geometric Mean
Applying Eq. [3], the BCGM is calculated as:

BCGM = exp(2.12 - 1.90/40) = 7.94

The Sample Median
Since there are an even number of samples, Eq. [4] is ap-

plied to calculate the SM, which is the average of the 10th
and llth sample values.

SM = (7.39 ± 8.41)/2 = 7.90

Table 3. Average widths of intervals calculated by two
confidence interval methods for selected sample sizes.

Table 4. Twenty observations of pore water velocity (vj from
Table 13.1 of Warrick and Nielsen (1980).

Population A

Population B

Population C

Population D

Sample
size
no.

6
12
20
40

100
4

12
20
40

100
4

12
20
40

100
4

12
20
40

100

Nonparametric
method

——— Interval wium ————

Parametric
method

»n*l*k

12.0 9.0
6.96
5.12
3.56
2.26

20.9
10.7
7.49
5.09
3.16

31.4
12.0
7.87
5.11
3.09

42.7
16.8
5.78
3.44
2.01

5.37
3.96
2.67
1.68

14.5
7.97
5.70
3.83
2.35

18.4
8.46
5.79
3.77
2.29

18.3
7.29
4.01
2.46
1.46

Sample

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Vo

cm/d
0.66
1.16
1.52
2.29
2.94
3.46
4.35
4.95
6.11
7.39
8.41

10.38
12.i81
15.64
18.64
24.53
32.14
47.47
88.23
90.75

In(v0)

-0.4155
0.1484
0.4187
0.8286
1.0784
1.2413
1.4702
1.5994
1.8099
2.0001
2.1294
2.3399
2.5502
2.7498
2.9253
3.1999
3.4701
3.8601
4.4780
4.5081

y = 2.12
a* = 1.90
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The Uniformly Minimum Variance Unbiased Estimator
The UMVU estimator of the median is obtained from Eq.

[6]. This requires that the !/»„ function (Eq. [7]) be evaluated
for {-6-2/[2(n - 1)]}. Using data from this example,

-cr2l[2(n - 1)] = -1.90/[2(19)] = -0.03052.

Substituting this value for z in Eq. [7] yields a value of 0.9525,
and applying this to Eq. [6] yields:

UMVU = exp (2.12)0.9525 = 7.94

With this data set, it is observed that the UMVU and BCGM
estimators yield values that are identical. The SM yields an
estimate of the median that is slightly lower, while the GM
yields a greater estimate for the population median. Thus a
choice exists in the selection of a estimate of the underlying
population median. The efficacy of an estimator, however,
cannot be made based on sample data alone: additional infor-
mation is required. The results of our study indicate that GM
is a biased estimator, and that the best estimators of the pop-
ulation median (i.e., zero bias and lowest MSE) are the UMVU
and the BCGM estimators. Thus, for this example, the best
estimate of the population median is 7.94.

Confidence Intervals
Parametric Method

Applying Eq. [12] and [13] to the data of Table 4 yields
LCLs and UCLs according to the parametric method:

LCL = exp(2.12 - 2.086 VI.90/20) = 4.38

UCL = exp(2.12 + 2.086

Nonparametric Method
As described by Eq. [8] and [9], the approximate 97.5%

UCL and LCL are the 5th and rth values of the ordered data
set, where * and r are calculated according to Eq. [10] and
[11]. For this example data set, s and r are computed as fol-
lows: _

s = (20 + 1)12 - \/20 = 6.03, rounding down to the
nearest integer yields s =_6.

r = (20 + l)/2 + V20 = 14.97, rounding up to nearest

integer yields r = 15. Thus, the UCL and LCL are 4.35 and
18.64, the 7th and 18th data values of Table 4.

It is observed that the confidence interval width of the par-
ametric method is shorter than that yielded by the nonpara-
metric method. It is impossible to determine from the sample
data, however, the efficacy of the confidence limit methods
with regard to coverage of the confidence limits provided by
the two methods. Based on the simulation results of our study,
the parametric method yields exact limits at the 97.5% level.
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